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We investigate the heat conduction in a quasi-one-dimensional gas model with various degrees of chaos. Our
calculations indicate that the heat conductivity � is independent of system size when the chaos of the channel
is strong enough. The different diffusion behaviors for the cases of chaotic and nonchaotic channels are also
studied. The numerical results of divergent exponent � of heat conduction and diffusion exponent � are
consistent with the formula �=2−2/�. We explore the temperature profiles numerically and analytically,
which show that the temperature jump is primarily attributed to superdiffusion for both nonchaotic and chaotic
cases, and for the latter case of superdiffusion the finite size affects the value of � remarkably.

DOI: 10.1103/PhysRevE.71.061202 PACS number�s�: 44.10.�i, 05.45.�a, 05.70.Ln, 66.70.�f

I. INTRODUCTION

The low-dimensional microscopic dynamics of heat con-
duction has been an attractive question since the early 1900s.
Much more attention has been paid to this problem in the
past two decades due to the dramatic achievement in the
application of miniaturized devices �1–6� which can be de-
scribed by one-dimensional �1D� or 2D models. More and
more numerical calculations are focused on the minimal re-
quirements for a dynamical model whether or not Fourier’s
law holds �7–18�. A convergent heat conductivity was shown
in ding-a-ling model �8,9�, which is chaotic. The studies on
the Lorentz gas model �10,11� �the circular scatters are peri-
odically placed in the channel� of which the Lyapunov expo-
nent is nonzero gave a finite heat conductivity which fulfills
the Fourier law explicitly. Hence, chaos used to be regarded
as an indispensable factor to normal heat conduction.
Whereas the FPU model �12,13� indicated that the chaotic
behavior is not sufficient to arrive at normal heat conduction,
recently a series of billiard gas models �14,15,18� were de-
voted to explore the normal heat conduction of quasi-1D
channels with zero Lyapunov exponent. However, the role of
chaos in heat conduction has not been well understood. Ad-
ditionally, the exponential stability and instability frequently
coexist in the scatters of real systems. Thus the model with
various degrees of chaos deserves further investigation from
the microscopic point of view, and it will also be interesting
to explore nonequilibrium stationary states and to determine
the steady temperature field.

In this paper, we focus on the quasi-one-dimensional gas
model, which is expected to describe a real two-dimensional
system whose transverse size is much smaller than the lon-
gitudinal one such that the kinetic excitation in the transverse
direction is frozen. The scatters in our model are the isosce-
les right triangle with a segment of circle substituting for the
right angle. In this case, the edges of scatters are the combi-
nation of a line and a quarter of a circle. Such a channel is of
chaos, which indicates exponential instability of microscopic
dynamics. Our paper is organized as follows. In Sec. II, we
introduce the model and investigate the degree of chaos for
various channels with different arc-radius and channel
height. In Sec. III, we study the heat transport behavior and

the corresponding diffusive behavior by changing the radius
of top arc and channel height. In Sec. IV, we investigate the
nonequilibrium stationary state and determine the steady
temperature field numerically. We also analyze the depen-
dence of the temperature profile on diffusion exponent � and
system size N theoretically. In Sec. V, we discuss the relation
between our work and others and summarize our main con-
clusions.

II. THE MODEL

We consider a billiard gas channel with two parallel walls
and a series of scatters. The channel consists of N replicate
cells of length l and height h, and each cell is placed with
two scatters as shown in Fig. 1. The scatter’s geometry is an
isosceles right triangle of hypotenuse a whose vertex angle is
replaced by a segment of circle with radius R which is tan-
gential to the two sides of the triangle. At the two ends of the
channel are two heat baths with temperature TL and TR. Non-
interacting particles coming from these heat baths are scat-
tered by the walls and the straight lines as well as the arcs of
the scatters in the channel.

For such a channel, the degree of chaos can be character-
ized qualitatively by the Poincaré surface of section �SOS�
�19�. Suppose we take out one unit cell from the channel and
close the two ends by straight walls. Then the problem be-
comes a billiard problem. A particle moves within the cell
and causes an elastic collision with the mirrorlike boundary.
We investigate the surfaces of section �s ,v�� under different
initial conditions. s is the length along the billiard boundary

FIG. 1. The channel with N replicate cells. Here, l=2.2, a=1.2,
h changes from 1.0 to 0.27, and R from 0 to 0.848 528 to ensure a
quarter of a circle always.
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from the collision point to the reference point. v� is the tan-
gential component of velocity with respect to the boundary at
that point. The filling behavior of phase space shown in Fig.
2 indicates the degree of chaos. In case I, it is nonchaotic.
The surface of section is regular and periodic, as shown in
Fig. 2�a�. As the radius R is increased from �a� to �e�, the
motion becomes more complex and the map becomes dense
with points except for some regular islands. In Fig. 2�f�, the
regular parts disappear, which indicates strong chaos.

III. THE HEAT TRANSPORT AND DIFFUSION BEHAVIOR

To study the heat conduction of the model, the heat flux is
investigated first. In calculating the heat flux, we follow Ref.
�10�. For simplicity, the particles from the two heat baths are
supposed to have definite velocities �2TL and �2TR, respec-
tively �14�. It is demonstrated by numerical simulation that
the form of heat baths has no influence on the heat transport
behavior in our system. We consider one particle colliding
with a heat bath during a period of simulating time. The
energy exchange ��E� j at the jth collision with the heat bath
is defined as

��E� j = Eh − Ep, �1�

where Eh denotes for the energy of the particle taken from
the bath and Ep for that carried in the channel. For M colli-
sions between the particle and the bath wall during the simu-
lation time t, the heat flux is given by

J1�N� =
� j=1

M
��E� j

t
. �2�

As there is one heat carrier in each cell and the channel
has N replicas, there are N particles in the whole channel.
Summing over the heat flux of N heat carriers, we have
JN�N�=NJ1�N�. Meanwhile, Fourier’s law reads

JN�N� = − �
dT

dx
= �

TL − TR

Nl
, �3�

where � refers to the heat conductivity which is determined
by Eqs. �2� and �3�,

� � N2J1�N� . �4�

We consider various cases by changing the radius R of the
top arc of the scatters to investigate their effects on heat
conduction. The heat flux of a single particle versus system
size shown in Fig. 3 occurs in four typical cases. Case I: the
� studies for R=0, h=1.0; case II: the � for R=0.001, h
=1.0; case III: the � for R=0.848 528, h=1.0; and case IV:
the � for R=0.848 528, h=0.27, respectively. The total cell
numbers are chosen as N=20, 40, 80, 160, 320, 640, and
1280, respectively. After a sufficiently long period of simu-
lation time, the heat flux approaches a constant value.
Clearly, the value of heat flux decreases with increasing R for
the same size. Remarkably, there is a 20 times difference of
heat flux between case III and case IV, which indicates that
smaller height suppresses the heat flux greatly. Thus, it ap-
pears that the value of heat flux can be adjusted in this way
in designing heat-control devices. Furthermore, our calcula-
tions, show that the heat-flux dependence on N exhibits faint
nonlinearity, although the curve looks linear for all cases
except case IV in the log-log scale.

In order to observe the deviation from the line, which
arises from the finite-size effect, we calculate the ratio of
heat flux versus system size for various radii. The data for
the aforementioned four cases are plotted in the right panel
of Fig. 3, from which one can see that both the increasing of
the system size and of the arc radius bring the ratio an up-

FIG. 2. Poincaré surface-of-section of the billiard problem. The
billiard starts with an incident angle 0.8 and unit velocity. �a� R
=0, h=1.0; �b� R=0.001, h=1.0; �c� R=0.015, h=1.0; �d� R=0.1,
h=1.0; �e� R=0.848 528, h=1.0; and �f� R=0.848 528, h=0.27.

FIG. 3. The heat flux of a single particle versus system size
�N=20, 40, 80, 160, 320, 640, and 1280� with the divergence ex-
ponent of heat conductivity �=0.721, 0.526, 0.101, and 0.009 for
four typical cases, respectively �left panel�. The ratio of heat flux is
J1�N� /J1�2N� for different system sizes �right panel�.
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ward tendency to the value 4, which ensures the Fourier law.
In case I, where R=0, there is only a slight increase for the
ratio around 2.4, whereas the ratio rises drastically along
with the increasing of systems size even if the radius R is
merely 0.001 �case II�. When R=0.848 528 �case III�, the
scatters become a full segment of a quarter circle. The ratio
also rises drastically at first and gradually after N�160 in
this case. In both cases II and III, it seems to approach dis-
tinct asymptotic values which are all different from that for
normal conduction. This implies that a smaller degree of
chaos is insufficient to bring about a normal heat conduction,
although the increasingly chaotic degree makes the divergent
exponent of heat conduction smaller. In case IV, we maintain
the scatters at radius R=0.848 528 and reduce the height h
from 1.0 to 0.27. In this strongly chaotic case, the ratio fluc-
tuates around the value 4 �dotted line�, which means that
Fourier law is obeyed.

It is known that the normal heat conduction happens when
�=0, which indicates that the heat conductivity is indepen-
dent of system size, and the anomalous heat conduction cor-
responds to the case of ��0. The heat conductivity � we
calculated can be given by ��N� with �	0 despite the
heat-flux ratio having a different increase in asymptotic value
for all cases �except case IV�.

We calculate � at the range of system sizes N from 20 to
1280 by averaging over many realizations for various radii R
at fixed channel height h=1.0, and the plot of the depen-
dence of � on R is shown in Fig. 4�a�. One can see that �
descends from 0.721 through 0.526 to 0.092 if R increases
from 0 to 0.848 528 for a fixed height h=1.0. Clearly, the �
descends rapidly for small radius �e.g., R=0.001 in case II�
and slowly for larger ones. This illustrates that the appear-
ance of an arc on the top of the scatter suppresses the diver-
gent exponent � drastically. If the channel height h for fixed
R=0.848 528 is changed from 1.0 to 0.27, the � is found to
diminish to 0.009. Therefore, the � appears to be indepen-
dent of system size and the Fourier law holds in this case.

Since the characteristic of heat transport is found being
closely related to the diffusion behavior �14,15,18,20–22�,
we investigate the diffusion property for the above cases sub-
sequently. For a particle starting at the origin at time t=0 and
diffusing along x direction, the mean square displacement
��x�t�−x�0��2	 characterizes its diffusion behavior. For nor-
mal diffusion, the Einstein relation of ��x�t�−x�0��2	=Dt
holds, where D is diffusion coefficient. If the mean-square
displacement does not grow linearly in time, i.e., ��x�t�
−x�0��2	=Dt�, we refer to anomalous diffusion. Recently,
the connection between anomalous diffusion and correspond-
ing heat conduction in a 1D system was discussed hotly
�20–22�. We plot the mean-square displacement versus time t
in Fig. 4�c� for the aforementioned four cases. Note that 105

particles were put at the center of the channel where x=0
with unit velocity and random direction in the simulations.
The top solid line and the bottom dash-dot line are precisely
straight in the whole simulation period �t=105�, which cor-
responds to case I �nonchaotic� and case IV �strong chaotic�,
respectively. We obtain �=1.628 for case I, which corre-
sponds to �=0.721, and �=1.001 to �=0.009 for case IV.
Beyond these two cases, the curves remain asymptotically

linear at large time t with diffusion exponent � between the
values of above two cases. The best fits of the slope give
�=1.357, which corresponds to �=0.526 for case II and �
=1.050 to �=0.101 for case III, respectively. The relation
between divergent exponent � and diffusion exponent � fits
the relation of �=2−2/� proposed by Li and Wang in Ref.
�20�, as is plotted in Fig. 4�b�, whereas Denisov et al. pre-
sented another connection of � with � on the basis of the
Lévy walk model �22�. More details about the origin of the
discrepancy between the above two relations can be found in
Ref. �21�.

As different diffusion behaviors are likely related to the
trajectory characteristics of the particle propagation, we in-
vestigate the PDF 
�
�x
� of the flight distance 
�x
 in the x
direction between two consecutive collisions with the scat-
ters. After a long time for adequate collisions in the channel,
the PDFs for the aforementioned four cases, shown in Figs.
5�a�–5�d�, respectively, take on completely different forms
for different cases. In case I, the discrete values of probabil-
ity indicate that the trajectories have abundant periodicity,
which is almost identical to larger system size. The maxi-
mum value of PDF appears when 
�x
=0.447, and the typical

FIG. 4. �Color online� �a� Conductivity divergence exponent �
vs circular radius R. The � refers to the magnitude of � for h
=1.0, R=0, 0.001, 0.05, 0.1, 0.2, 0.4, 0.6, and 0.848 528; the � for
h=0.5 and R=0.848 528; the � for h=0.27 and R=0.848 528 has
the value of 0.009. �b� The relation between � and �, where the
circle is the numerical result, the solid line is of �=2−2/� �20�,
and the dashed line is the result of Ref. �22�. �c� Log-log plot of
mean-square displacement �x�t�2	 vs time t. The curves from top to
bottom on the right correspond to cases I, II, III, and IV, respec-
tively. The ensemble has 105 particles starting from the center of the
channel at time t=0, where x=0 with the unit velocity and random
direction.
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trajectory is plotted in Fig. 5�e�, which shows explicitly that
the parallel passage makes the periodic trajectory possible,
and the particles are easier to propagate along the channel
with fewer collisions. It is superdiffusion in this case. In case
II, only the smaller system size has explicit periodicity. With
the system size growing, the periodicity is destroyed by the
collisions with the segment of circle time and time. The PDF
gets smoother in this case. In case III, the periodicity hap-
pens only for large flight distance 
�x
 with a very small

number of families. Note that the maximum of PDF corre-
sponds to the value 
�x
 of 2.2, which is just the length of a
cell, and the PDF decays in power law. In this case, it re-
quires more collisions and takes more time for the particles
to escape a certain region. Thus the propagation is sup-
pressed but is still of superdiffusion. The normal diffusion
takes place when the particles are scattered by a sufficiently
large density of hyperbolic scatters �case IV�. Consequently,
the strong chaos presents the trajectory of heat carriers with
more aperiodicity. The PDF takes on its characteristic form,
which has a Gaussian tail as shown in the inset of Fig. 5�d�.

Thus, the propagation modes are responsible for the dif-
fusion behavior. The abundance of the aperiodicity of the
trajectory is characteristic of a chaotic channel and may also
play a crucial role in normal diffusion. In other words, if the
trajectory in a certain system brings about the aperiodicity
due to some other mechanisms, such as in the polygonal
billiard gas model �15�, the normal diffusion behavior oc-
curs.

IV. THE CALCULATION OF TEMPERATURE FIELD

We calculate the temperature field following the approach
proposed in Ref. �10�. The temperature of the ith cell is
defined by averaging the kinetic energy over all visits into
the cell,

Ti = �Ei	 =

�
j=1

m

tjEij

�
j=1

m

tj

, �5�

where tj denotes the time spent within the cell in the jth visit,
and m is the total number of visits. For sufficiently large m,
we expect a steady temperature profile, and this is indeed
verified in our calculations for a total of 1010 visits. The
temperature profiles we obtained are plotted in Fig. 6. It is
worthwhile to point out that the steady temperature profiles
between nonchaotic and chaotic systems are quite different
in the thermodynamic limit, which is due to the different
diffusion behaviors as shown in Fig. 4�c�. As case I is non-
chaotic and has uniform diffusion exponent �, the tempera-
ture profiles keep almost the same shape for different system
sizes. At the two ends of the channel there are large tempera-
ture jumps which play an important role in the Fourier trans-
port and dynamics of the system �23�. These jumps arise
from the boundary heat resistance, which usually appears
when there is a heat flux across the interface of the two
adjacent materials. In cases II and III, which are chaotic and
have asymptotically decreasing �, there also exists boundary
heat resistance. Unlike in case I, the temperature jump here is
smaller and diminishes when the system size grows. For
larger size there is almost no temperature jump which corre-
sponds to a nearly linear temperature profile. Both the larger
system size N and the arc radius lead to the increase of chaos
degree which is responsible for the decrease of diffusion ex-
ponent � ��1�. In case IV, which is strongly chaotic, the
temperature profiles are almost linear for various system

FIG. 5. �Color online� �a�, �b�, �c�, and �d� The PDFs of the
flight distance 
�x
 between two consecutive collisions for the four
cases I, II, III, and IV, respectively. N represents the system size.
Note that the log-log scale is used in �b� and the inset of �d� where
Gaussian distribution �dashed line� is in comparison to the numeri-
cal PDF �solid line�. �e� The typical trajectory �thin lines� with
periodicity in the case of R=0,h=1.0.
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sizes we considered, corresponding to the normal heat con-
duction.

We estimate the temperature profiles from the average
point of view. Considering the incident particles from the left
heat bath �where x=0� propagating along the x axis to the
right end, we suppose that a reflecting boundary is placed at
the origin of the x axis and an absorbing one at the other end.
When 2���1, we assume that the mean density nL�x� of
the particles at site x in the steady state is proportional to
�1−x� with = �2/�−1��3/2, where we set x= i /N. Under
this assumption, we have nL�x��1−x �10� when �=1 �nor-
mal diffusion� and nL�x��const when �=2 �ballistic diffu-
sion�. The conservation of particle number requires

nL�x� �
�1 − x�

DL
, �6�

where DL is the diffusion coefficient. Likewise, for a particle
propagating from right to left, we have

nR�x� �
x

DR
. �7�

We assume DL=TL
�/2 and DR=TR

�/2. Thus, if 2���1, the
temperature is given by

T�x� =
TLnL�x� + TRnR�x�

nL�x� + nR�x�
=

TLTR
�/2�1 − x� + TL

�/2TRx

TL
�/2x + TR

�/2�1 − x�
,

�8�

where = �2/�−1��3/2.
As shown in Figs. 6 and 7, the analytical results �in solid

lines� are in good agreement with the numerical ones except
those at the two ends of the channel for superdiffusion cases.

These deviations are likely due to the different boundary
conditions we used in the numerical calculations and in de-
ducing Eq. �8�. Furthermore, the value of �, obtained by the
best fits for the numerical temperature profile at N=1280
with Eq. �8�, agrees strongly with the simulated result for the
aforementioned four cases. One can see clearly from Eq. �8�
that the temperature profiles are closely related to the diffu-
sion exponent �, namely, the case with the smaller diffusion
exponent tends to have a smaller temperature jump. Accord-
ingly, it is not unexpected that different chaotic cases may
share the same temperature profile if they have the identical
diffusion exponent �, as shown in Fig. 7, and the case with
the smaller diffusion exponent requires a smaller system size
to achieve the same temperature profile. Moreover, our cal-
culations show that the results of Eq. �8� are consistent with
the numerical ones even in a larger temperature gradient.
Thus, the temperature profile is mostly dependent on the dif-
fusion behavior, which is remarkably affected by the finite-
size effect for chaotic cases of superdiffusion.

V. DISCUSSION AND CONCLUSION

In summary, we have investigated the role that chaos
plays in heat conduction by the billiard gas channel. We have
demonstrated that the degree of dynamical chaos is enhanced
by increasing the arc radius or the system size for the chaotic
channel, and the mass and heat transport behavior is signifi-
cantly related to the degree of dynamical chaos of a channel.
The stronger the chaos is, the closer to normal transport be-
haviors the model seems to be. Furthermore, our numerical
results of two exponents � and � for both nonchaotic and
chaotic cases satisfy the formula �=2−2/� when ��1 �20�.
We also discussed the microscopic dynamics by the PDF of
flight distance in the x direction. It seems that the aperiodic-
ity of the trajectory plays an important role in diffusion be-
havior. Finally, our results showed that the temperature
jumps at both ends of the channel depend mostly on the
diffusion property for both nonchaotic and chaotic channels,

FIG. 6. �Color online� Numerical results of temperature profiles
for TL=1.0, TR=0.9, and sizes N=20 �dash�, 80 �dot�, 320 �dash
dot�, and 1280 �dash dot dot�, respectively. The four panels refer to
�I� R=0, h=1.0; �II� R=0.001, h=1.0; �III� R=0.848 528, h=1.0;
and �IV� R=0.84 528, h=0.27. The solid lines correspond to the
best fits for the numerical temperature profile at N=1280 with Eq.
�8�, giving the analytical values � with 1.65, 1.34, 1.06, and 1.00
for the above four cases, respectively.

FIG. 7. �Color online� Numerical results of the temperature pro-
file in comparison to the analytical results. The numerical tempera-
ture profiles with R=0.848 528, N=40 �dash�; R=0.1, N=80 �dot�;
and R=0.05, N=160 �dash dot� at h=1.0 almost share the same
shape. The solid line �the upper on the left� is the plot of Eq. �8�
with �=1.25.
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and the finite-size effect is more crucial for chaotic ones.
Although the billiard model with noninteracting particles

is a drastically simplified model, it is applicable for capturing
the underlying dynamics of many systems and has in fact
been realized to a good approximation in experiments, such
as the experiments on antidot superlattices �24� and those
involving semiconductor microjunctions �25�. In those sys-
tems, the carriers can be regarded as ideal noninteracting
particles since their Fermi wavelength is usually smaller than
the characteristic size of the lattice or junction. Moreover, the
Lorentz model �26� has been used to explore the link be-
tween electrical conductivity and diffusion successfully.

We have used �-function velocity distribution for the heat
bath in our numerical calculations. One may argue that the
heat bath with Gaussian velocity distribution is more practi-
cal for a laboratory thermostat �10,18,26�. We have calcu-
lated the temperature profiles and heat flux using the
Gaussian-type heat bath, and we found that the heat-transport
behavior in our system is not affected by the heat baths. So
we take on �-function velocity distribution for simplicity. In
some cases, i.e., in quantum systems, a Gaussian thermostat
may be more appropriate.

It is worthwhile to discuss the relation between our work
and others in this field. Alonso et al. �10� investigated the 1D
Lorentz gas model full of periodically distributed half-

circular scatters. By defining the heat conductivity and tem-
perature field as a statistical average over time on the hypoth-
esis of local thermal equilibrium, the Fourier law holds in
this case, and a linear gradient is given for a quite small
temperature difference. Our work starts from the same ap-
proach but different scatter geometry is taken into account.
Thus it is not surprising that our work has some overlap with
theirs in spirit. However, we pay much more attention to the
role played by the different degrees of dynamical chaos in
heat conduction. As a result, our intensive calculations ex-
tended the results in Ref. �10� and concluded that only suf-
ficiently strong chaos results in normal diffusion, thus the
normal heat transport.

Li et al. �14� presented the dependence of heat conductiv-
ity on system size and the temperature profile in a channel
with zero Lyapunov exponent where the right triangle scat-
ters are periodically distributed. In this case, the exponent
stability leads to abnormal transport behavior. Clearly, their
result is the nonchaotic limit of our model.
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